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A 3ethod is presented wnich finds tae aisizua vige
motions for & aeaipulator between Fiven and states.
The aethod coasiders tae full noalinear Aaaipulator
dynasics, actuator saturation caaracteristics, and
sccounts for both the preseance of ovstacles ia tpe
vorc space and restrictions oo tne 3otions of the
manipulataor's joints. The aethod is computationally
practical and has been iaplemented ia « Computer
Aided Design (CAD) software paccage, OPTARM I,
wnich facilitates its use. Examples of jt¢s
application to a six degree-of-freedoa articulated
saaipulator, performing tasks i a typieal
euvironMeat, are presested. The results sacy that
substantial isprovements in systea performance can
be acnieved with the tecanique.

INTRODUCTION

Robotic manipulators ia curreat practice often
do 20t perform tneir tasks ia the xiniaus times
possible  because tneir a3otions  are planned
sanually. Such planning gonerally fails to select
the best paths or the saximus permissible speeds at
all points 1long those paths. This results ia lower
productivity in industrial sppliczations and reduced
eoffectiveness in aoa-industrial uses, as iz space.
Manual Plaaniag of aiaimua tiae sanipulator aotions
is very difficult because; manipulators aave aigaly
Roalinear dynasic caarsctaristics, cheir sciustor
capadilivies are usually fusctions of taeir dynsaic
3tate; and their motion timee are complex fuactions
of tneir patns.

Consilerable researcn nas bees ioaa > fiad an
snalytical solution to this prodlea. The first
significant study used classical optizal zoantsal
theory to obtaim the solution for 2 aiaplified
ligesarized sanipulator model'. Lacze tae aoulicear
prodlem was solved aumerically usisg optizal
control aethods, but the inteasive computation
required have restgicted tais Approaca 0 siaple
manipulator models®. These solutioas 4ii a0t
include geometric Constraiacs, suca as obsrtaclés.
Other solytions typically involve supstaatial
assumptions that lisit their usafylaess. Some nave
assumed “bang-bang” form solutions <.tn a 3pecifed
Buaber of switcaing poiats, but 3i13ce tne actual
ouaber of seitching poiats is not « oxn. 1 true
optimal solution csanot be duarsataed’’”. dtaers

applied _ dyu»_l}c_-pmgrming tacnoljuss 3 the
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nog~linear proolea by searchiang a tassellated state
space for tne optimal trajectory’. However tais
@etnod assumes straight line segaents and theredy
Reglects the iaportaat effects of path curvature.
Computatioa time for sucn ap SPProacn can be a
problem if it is applied to reslistic systeas.
Others nave attempted to develop approximate
solutions ta the . problea to reduce the
computational effore”, Besearcn to find o
practical solution %0 a aajor subproblea of the
deneral oOptiaal motion problem has amet wizh
Considerable success. [a this sork the problesm is
limited to finding e sanipulator’'s velocity
profile along a prescribed pata so that it is
traversed in ainiaua tise withoyt violatiag toe
paysical capabilities of tae systea, such as
actustor sctaturatioa lisits. Clearly, obstacle
Avoidaace is 20t an issue ia this probles. A
rigorously optimal, computatiosally efficieat
algorithm has beea develaped for fiadiag the
Ridisum tiae ““9‘3 of a1 sanipulator along a
prescribed path'*™, It considers tne fuill
goalizear dyzamics of the amoipulator and permits
actuator coastraiats to be expressed as cosplex
functions of the systex state. Subsequent reseacn
has saowm the algorsina is practical for
coatrolliag denersl 3ig degree-of-freedon
aanipulatars, 1 useful design tool enen used ian tae
form of & nignly intecactive prograa, and that it
caa be extended to include suca conatraints as the
Aaxisus dynamic forces tnat an object Dbeiag
tolerate and tne Speeds wnizh a mipul&tas ?Sn
sustain witnout iosing its 3rasp of tne odjact’* 'V,
Suosequentliy, other raaurcnofs nave suggeated
esseatially tne same algorizaa''.

Receat researca 3uggests tiat . Enxs algoritan
3ay be used to fiad optimal patas . Conceptually
tae algoritam zould searza various paths for the
Oue witn tne lowest time. 30 far tais APProacl nds
been applied oaly toucﬁmr fery simple prooleas
or very special cases “° This paper snows taac
tois approaca can be aade practical for realistic
problems, and that it can oe axteaded to coansiier
the «ork space obstacles aad 3agipulator joiat
aotion limitatiocns found in all realistic systeas.

The metaod finds the ainizus time motion of s
@anipulator between given eand atates, coasiders tae
full nonlinear dynamics of tne aapipulator, aad
SCTuAtOr saturation caaracteristics (specified as
functions of systema's dysasic state), and aud
9ffector and payload constraiacs. It parmita the
coastraiats imposed by obstacles aad Jjoiac liamits
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to be represented in their aatursl coordinate
frame® by using & penalty function optimizatioa
approach. It bandles tnese azixed constraint
functions 4in a very computationally efficient and
flexible asnner. The method nss been implemented
ia & Computer Aided Design (CAD) software package,
called OPTARN [I, with extensive interactive
graphics cepabilities <nich ennance its practical
use. Examples are presented of its application to
planning the motions of a six degree-of-freedoa
articulated manipulator performing tasks ia a
typicsl highly structured enviroamsent. Results
snow that substanctial improvement in systea
performance can be acaieved with the tecanique.

ASALITICAL DEVELOPMENT
The Basic Time Optimal Control Algorithm

The basic time optimal control algoritha is
derived in References 7 to 10. The algoritnm
obtains the open loop torques/forcas for the time
optimal wmotion of a general six degree-of-freedoa
manipulator along a prescribed opatn subject to
sctuator constraints {see Pigure 1). The algorithm
also provides optimal joint poaitions and
velacities for closed loop control. The method is
applicable to manipulators with rigid lioks for
wiich the dynamic model and the joiat soordinates
can be defined for any point on the path.

Y
Final Position
Toutial
Pomtion
z A 5

L\\ Work area 3

Work sres | "

Work ares 2

Pigz. 1. A 3ixz Degree-of-?reedom Msnipulator in its
Eavironaent

Following the method in Referasces 7 to 10, tne
dynaaics equations of +the amanipulator are first
vritten in terms of tne joint positiom vector , 9,
and its time derivatives ﬁ The vector @ ia3:

T
[91‘82'53’66'95'96]

Since ¢the path is a «nown function of 3, the joiat
variables 9 and © can be expreased ia terzs of the
distance along tae path, S, and tne tip velocity
and acceleration along the path, 3 and 3, usiag tae
Kinematic transforastion froa J0rg-space
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coordinates, P, to the manipulator joint angles, §:
B(s) = R(8) (1)

where P is f_x.y.z.a1 ,8,.9.17, tne position and
orisantatation of tne end-eff8ctor. Differentiatiang
Bquation (_1_) t¥ice with respect to time and solving
for & and 3 yialds:

-1 -
=Ry E,S

- 2)
-1 «2 -1 T -1 *2 (
=Ry (RS + P S" « (Ry'P)" Roo (R "B IS"}

D: @

Jnere tne subscripts s and e denote partial
derivatives witn respect to the acalar S and vector
@, respectively. Using BSquation set (2), the
dynamics equations, writtea in terms of 9, % and 3
can be transforamed iato:

n@s + p(@s + i@ = T (3)

where u, b snd G are functions of the manipulator's
kinematis stucturs, R(8) snd its derivatives, and
the partial derivatives «ith respect to S. The
vector T is composed of the actuator e¢fforts. The
itn actuator saturation limits, 7T

. imin 804 Tigay
may be functioas >f § and g: imia ’

Timin(@ 80 €T, s T (8.,8) i=1,2,...,6 (a)

Reference dJd rigorously shows that the time to
traverse the path froa the given initial coadition
to the required final condition «ill be minimal if
the manipulator’s acceleration,$, is equal to either
its maximum permaissible value, 3 _, or its sinimum
peraissible value, 3,, at sach  point along tae
path. The values o? 5" and 3, are obtained by
solving tae vector Squatiod (3) tog 5 successively,
with tne bounds on T given by Zquatioa (4), to give
six pairs of gJuadratic equations ja 3, for each
poiat on tne path:

S =(, =535 -¢)n

ai imax i R §

. .2 { = L,Z,...,ﬁ (5)
S“u - ('1" g biS GL)/ni

The values of §ai’nd 3,; obtained froa 3quation
(5) are the upper aad iovar bounds oa i range of
peraissible accelaratioas lefined oy the
capabilities of the ita actuator. Clearly, the
permissible acceleration for the manipulator at
eacas point on tne path, 3, is one that satisfies
all actuator coanstraints. Heace it aust lie in the
intersections of all the rangses given by squation
(5), 3 g < 51 < §‘., Refersnce 10 snows that other
pnysicli :onstrain%a can be treated in a similar
manner to actuator coastraiants. The size of the
peraiasible acceleration range depends on tae
valocity $. Generslly, as ¢ne manipulator's speed
increases, the range of the  peraissible
accelerations aproaches zero (or §, =5 ), at some
value of tne velocity, Sn. Por § groagar than 3 _,
no solution for tae acCeleration 3 axista, whicha
meass tnat toe manipulator is not capable of
saintainiag tne pata. Ploting 3_(S) versus 3 ia
tae phase plane yields a velocity Yinit curve. 1z



the ®Oticn trajectory crosses this curve, oane or
more of actuator capabilites will be exceeded and
the ssnipulator «ill leave its prescribed path.

Reference 10 presents a very efficiant algorithm
tnat 30lves the ainimul time prooles by_findin; the
seitcning points between S (S,5) and 3,(3,5) such
taat the velocity 3 is alvays aaximum, but doas not
cross the limit curve, 3_, in the phase plase. Tne
time to travel along tne path is given by:

£ 6)

(3 4
(]
OUI ——
ur|&

Clearly, the nigher the velocity at each poiat
along the path, the snorter the travelling tise.
The time aqDtained by coaventional costrollers is
always loager than the optiaal time obtained by
tais algorithm.

Patn OEtiaizntion without Constraints

dita the ability to find the mizimum traveling
time aloog a specified path, ¢ , it is now possible
to optimize tne pata O t%3d tne one 4ith the
smallest ainisus time, t.. The time t_ is
calculated during the optimization, using Equxtion
(6).

First, the path is represented by a finits set
of a scalar paraseters, a, toa, shich can be
¥ritten in vector form as:

a=(a,a5a,,..a}" )
As discussed later, several aethods for parameter-
izing aanipulator paths were considered. There will

be a s3iangle value of tp for eaca path, or set of
path paraseters:

£, = 5@ (8)

To find the optimal pata, t_(a) is defined as
the ovojective {or cost funmction) *J(a), «¢hica is to
ba anipimized is the form of tne uncoustrained
ainimization problem:

Minimize J(a) = t,(a) (9)

A oumber of wethods exist for tne numerical
solution of tnis problem. The procedurs developed
bers is 0ot reatricted to a particular technique;
and several +ers successfully used in this atudy,
including exaaustive search techniques. The
Pattern Searcn amethod proved o be the most
effective for thne sajority of the problems ireated
here. This method is «nown for its ability to
perfora uuﬁnwuu1 problems with a wide
range of cnaracteristics “. A detailed description
of these metnods is bayond tne iscope of tnis paper.

Patn Optimization wicth Obstacles and Joint dotion
Constraiat Jsiag Pepaity Punctioans.

The preseace of worx spacs obstaclas and joiat
motion limitations add additiosal sonstraints to
the optimization probles described above. Tnese
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ars iaportaat both because 3anipulator paths <nica
cose too close to other objects genarally are
unacceptabdle, and because tne msotions of
zagipulators ars limited by practical desiga
coasiierations that require toeir jointa have oaly
finite ranges of wmovameat3. The unconstrsiaed
optimization will often find its optimal path in
these unacceptable regions. These constraints can
be 4rittea in tne form:

g5 (@ <0 j=12,..9

>0 (10)
i=1,2,...,6

whera g (a) are the obstacle constraint functions,
q i3 thé& ausmber of obstacles, and 9, ip and oi“x
are the joint limits oa the ith joint.

Tne uncoastraised optimization procedurses, such
as those described above, are aot applicable %o
tnis problem. The use 3f coanstrained optimization
techniques is complicated by the fact that tnese
constraints are zost aasily expresaed in different
coordinates, workspaca coordinates for obstacles
and joiat space coordinates for joint limits.
Also, Dbecause of sucha factors as dynamic
disturbances, it would be undesirable to have the
manipulator move along a constraint. It would be
more desireable to have the manipulator stay some
distance from the constraiat. Tais distance would
ideally be selected, in part, based on the
additional time it would require. In short, a
plannpar wmignt be willing %o move closer to an
object or a joint limit if that resulted in a very
substantial tize 3avings; otherwise ae would moat
likely prefar to atay further away from it.

For these reaso tae penalty function
optimization approach was selacted for <this
proolea. In this method a weigntad penalty for
coming close to a zoastraint is added to the coat
function, t _{a). Thus tne constrained optimization
problem is® recast into %he unconstrained fora
discussed apove. The anetnod can be used easily for
constraints  expressed in different -zoordiinats
systems, eliminating tne need for computationally
intansive coordinate transformations. Finally, tne
<Jaignting factors provida flexivility in selactiag
tne importance of aaiataining a distaance from a
specific coastraint. For the axamples presented in
this paper, the cost function was aodified to:

8 M :
L w L
1 81

Jee @l X F 22—} (1)

o
i=1 dt 1.1(91-ein1n) <] -9,)

(Timax 4

“neres tas v'3 are the Jeigntiang factors, the a's
are positive iantaegers, usually takeo as 2, the d.'s
are the ainimal iistaace to the ith obstacle t%ou
the path, X is tne aguamber of joiats in tne
mapipulator, and N is the number of obstaclas in
tne enviroament. OPTARM [I uses a table of various
general geoametric shapes for coaputing tne ainimum
distaace to obstacles. Mors complex oojects can be
considersd using 3olid amodelliasg tecnaiques.



Path Represention

As discussed earlier, to optimize the path it
aust be Trepresented DY a finite set of scalar
paraaeters . a ,a,,....a_]. The larger tne auaber
of variables used, the Better tne optizal asolution
because tne optimization has zors flaxisility ia
finding tne ainimum time path. The disadvantags of
using a larger nuamber of parametars i3 taat tne
computation time will be larger. The above patn
optiaization amethod is not depeadeat upon any
particular type of patn represeantation, aad a
aumber of methods ware considersd in tais acudy.
The tnree that proved most affective Jera: 3traiznt
lines connectad by circular arcs; parturbations
about a straignt liae by a Pourier series; and
splines. These have Dbean intagritad into the
OPTARM I[I program.

Straignt lines and circular arcs nave tne
advantage of being easy to visualize; and many
robotic manipulator program lacguages already use
these fuanctions for path represaatations. Fouriar

series repressntations, being distriouted
fuactions, ware found to be efficisnt. Splines
have the advantage that they ailow easy

manipulation of the path's anape «wnile requiriag
only a limited nuamber of parameters. They are also
commonly used in CAD systams to model curved line
segaents. Hence they ara coapatible wita the
softvars used to amodel the complex geocaatry of
obstacles aand the manipulator its?+f{5 The resulcs
presentsd velow use Bezier splines '*'~ and tne use
of tnis ‘techanique for path represeantation is
presentad below.

Ao individual Bezier spline, called a s3pan,
defines a curved line betseen poiats. 3pans can ve
combined to fora one 1large gspline defining tane
entire curve over a large ogumber of poiats,
matchiag derivatives at coanections between spans.
The cubic fora of tne 3eziar 3pline is:

T = (1.-u)35o + 3u(1-u)25 + Juz(l-u)gz + u353 (12}

1

Jnere g(u) is a point on the 3pline, an ax? vactor
iz n dizensjonal space. The r.  ars the coatrol
points «nicn define the spline, and u is a 3calar
variacle, usually set to vary betweea Q and 1. The
poiats r  tnrouga r; are snown in Figurs 2. The
Bezier Spline is set”up so that tne spline passes
thr?ugn X, and r;, and is tangent to the lines
defined by =z, r, and g, Iy. The spline’s saaps is
modified by adjusting Ene positions of 2, and .
The positions of the L, and r, vectors can oe
varied <©0 obtain general geomatrii curves sucn a3
straignt lines, parabolas, and circular arcs.
Here, r is ctae the 5 x ! vector P, «nicn defines
tae position and orieatation of tne manipulatar's
end effactor om its patn, and u i3 a aormalized
distance along the pata, equivaleat to 3.

Writisg Squation (12) in matrix fora, tae spline
represenation of the manipulator path baecomas:

o] ro
P(u) = (1w uwledy |3 L B 3% TS
3 -6 3 0 r
-2
-1 3 -3 1 1§}
4nich has toe form:
P(u) = yM R (14)

The partial derivatives of the patn with respect
to tne distaance along the patn, 3, required by
Zquatios set (2), are obtained by differsatiating
tne J matrix. For example:

u
— . 2 15
Us * 35 ° 35 (13)

and tonus:
Py " Ug My R (16)

These azatrix representations of tne spline paths
and their derivatives are easily integrated into
QPfARM II. The variadles defining the locations of
the control pointa coapose the parameter vector, a,
in  the path optiamizatioa. It mignt also be aoted
taat it is posaible to perait the end point
locations to “"float” during thne optimizatioa, wnich
essantially optimizes the location of the
aanipulator's work atatiouns. The penalty function
approach can be used to ensure tnat tnese locations
are <apt in appropriate places.

)
Xﬁ Control Points .
Bezier
Pl, Spline 3
” 1 \\\
~ P ]
P, : N ‘1’, \
1 I
L/ "y 2
1 t .
| 1 )X
L { Lol
ahbbbehabbhindl L
x3 ..................... boZuear”

Fig. 2. A 3 Dimensional Beziar 3pline Spaa.
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QPTARM II integratas the basic optimal zoantrol
algoritam  «@ith patn represeatatioan, obstaclas
aodeling, and path optiamizatiom suoroutices ¢to
optimize auvomatically the aotions of amanipulatars.
Sxamples of tne results ootained from OPTARM II are
presaatad delow. The figures are annotated versions
of those produced oy tne OPTARM II grapaiczs
iaterface.
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cztinizntion of the Motion Along 3 Specifled Path.

Application of the basic aethod, without pata
optiaization, can yield very substantial
taprovements io performsnce over coanveational
control methods. Here the manipulator aoves fros
3, in Worx Area 1, % Sp, in dorc Area 3, along a
path wnich has been cChoSen manually to be a "good
path”, avoiding the obstacles formed by dork irea 2
with its TV casers. This patn is called an
intuitive path. The work space coordinates of 3
and S, are (1.29,0.3,0.5) and (-0.5,-2.0,-1.25),
respccgivoly. The top viaw of tnis patn and work
place is soown in Pigure 3. The path has been
constructsd in the typical industrial aanner from
straignt line segments Jjoined by circular arcs.
The 3ame path is shown in a perspective view in
Pigure 1.

In conventional manipulator control tae ool
point moves along its preprograamed patn froa its
initial point to its (final point, at a specified
conatant speed. The systaa typically uses counstant
accelaration and deceleration at the end points.
The values of the constant accelarstioa,
decelaration and velocity are selected so that the
mapipulator does not leave the required patn at aay
point. This means that a4t 308t poiats oa the patn
the aanipulator is moving slowsr than it canp, and
therefore its travel times is longer taasn tae
optimal.

Pig. 3. Top View of A danipulator oag its [atuitive
Path.

The coaventional coantrol trajectory ia the pnase
plane, S - 5, is shown in Pigure 4. As explained
earlier, if the manipulator aaters iato tae region
above the limit curve its actuators will be
saturated and it will leave its preacribed path.
The coaventional coatrol is cnosea to nave the

highest constant velocity that will not exceed this

limit. This is doge by just baving the coastaat
velocity section just pass under tne lowest poiat
of the liait curve. The time required to complete
the move witn the conventional coatrol is

calculated using Equation (6); for this case it is
1.28 seconds.

Also showm in ?igure 4 is the optimal trajectory
calcualted by OPTARM II for tnis path. It has three
switching points snd achieves hnigner velocities
thaa the ceaventicnal coatrol for a good portiom of
the path. Ibere is a switca to deceleration so tae
trajectory just passes uader the limit curve. At
this point the ctrajectory seitches to acceleratioan
%@ gain as aucha 3peed as possible Dbdefors it
switches to the daeceleratioa required to stop at
the final position

Forbidden Regios
18.0 \§§§§§§§\

3 N '
P et ppniaiehinbheh i S
i 3 Coaventioual coatol: t = 1 28 see. !
0.0 — : iy
.0 1.0 2.0 S mowr
I Acceiermwn | Decelerstion Accslerstion Deceiovamon
o )

Pig. 4. Phase Plane Trajectories of Conveational
and Optimal fotions for the Intuitive Path.

The optimal =3oOvion requires only Q.79 secoads.
The coaventional coatrol takas 624 longer than the
optizal. This is a very substaantial improveasat ia
perforaance. The computar grapnics faaturas of tne
program permits tae display of the optimal dynaaic
motion of the aanipulator in real time. The program
also provides otner importaat iesigu and operating
inaformation, 3uch as powsr coasumptioa and actuator
torque profiles. The torque profilas for this :case
ars snown in Pigure 3.

ACTUATON 3 ACTUATOR 2 ACTUATOR 3

|3

i

b

| 3 ]

ACTUATOR ¢ ACTUATOR 3 ACTUATOR &

Pig. 3. OPTARM II Actuator Torque Profiles for tae
Iatuitive Path, X-a vs S.
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Path Optimizesion vithout Constraiats
e e A —

The case described in the previous section was
ther optimized using OPTARM II. The end points
vere ikept the sase and the program optimized the
path. The inizial path for <cthis optimization
process is simply @ straight line connacting
the 1intial and flaal points, sot a particularly
sophisticated choice. The resulting optimal patn
is shown in Pigure 6 along with tae intuitive path.
The time to aove along tais path is 0.47 seconds
with two spline spans. This aignt oe compared %o
«79 seconds for the optimal wmotion aloag the
intuitive patn, 68% longer. This optisal path
passes over dork Area 2 and under tae TV camera
wnich may or aay aot be acceptable. It aight be
noted that this is less than one half of tne time
for the intuitive path witn couventional coatrol, a
very sigunificant iaprovement in performance.

Pig. 6. Uncoosatrained Time Optimal Pata (Witnout
Regard for Obstacles)

The phase plane diagraas for tais optiaized pata
is snowm in 7Pigures 7 aloag ¢ith its limit curve.
Also spown ia this figure 1is <tne optimized
trajectory for the iotuitive patn repeated froa
Pigure 4. In optimizing the path, the prograa has
found a path with 3 signicantly nigner limit curve.
This permits a higher trajectory in tae pnase plane
wpich results in a shorter mova time, refer to
Equation (6). It aight also be notad that snile
the intuitive path required taree switcnas, the
optimal path requires only one awitca. This also
serves to decrease the motion time.

The one-span spline optizal pata, as aigat be
expected, gave a slightly looger time of 0.43
saconds. The one-span spline requires somawnat Lass
computatioa time. In any event, tne coaputation
times for this method do not represent a severs
burden; the method is claarly intesded as an
off-line planniag technique and tnerefors does not
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nsed to have real time computationsl speed. OPTARA
I1 requires just a few seconds of computation time
on a MicroVax II <o optimize the aotion along a
given path. A path optimization will typically
coaverge ta within five perceat of the true
optimal witn about 50 %o 100 iterations, depending
upon tne initial path cnoses to start the procedure
apd the restrictions on the range of acceptable
patas to be copsidered. An effective optiaization
can usually be completed in minutes of CPU time.
For tusks which are %3 be repeated a number of
tizes, the increases in productivity would most
Sertainly make this a cost effective procedure.

%,

Forbiddes Region

RN

QL7777

10.0

9.0 1.0 2.9 S aaser

Pig. 7. Phase Plane Diagras for Uncoastrained
Optimal Path.

Path Ogtinizntion with Jbstacles and Joint Motion

How consider the previous example, but wnere
having the manipulator pass under tne TV caaera is
unacceptable. In order to solve this problem the
camera and the region directly belov the camera
vere designated as obstacles ¢o JPTARM II.. The
optimization procedurs vas repeated, asgain with an
initial path of a 3traignt line betseen tne ead
points. The joint angle limits were sufficiently
outside the range of prospective paths toat they
did not play a1 significant role in tne
optiaization. The resultant pstn i3 shown in
Figure 3 aloaog witn tne uncosstraiated optimal
pata. Pigure 9 s3nows the final optimized pnase
plane diagram for <¢his case. The limit curve is
novw lower in the region of the obatacla as tne path
is forced away from the camera by the penalty
function. The travel time has increased fros the
unconstrained case value of 0.47 seconds to 0.53
seconds. This is a relatively small increase, and
tne tool point no loager passes through the camera
field of viaw. It should be aoted tnat this path is
further a«ay from the camera than the original
intuitive optimal path and has a auca 3norter aove
time. The ainizum distance to the obstacle could
be increased or decreased simply by cnaaging the
weignting factor ia tne pesalty functioa. Of
course, there would be a corresponding increase or
decrease in the motion time. The computation time
for this cass was virtuslly toe same as tae
anconstraiaed optiaal pata case.




t=0.47 sec.

1.

Pig. 8. Time Optimal Constrained and Uncoastrained
Paths.

- 9.
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Pig. 3. Pnase Plane Jptimal Trajectorias for
Coastrained and Uncoastrained Paths. .
SUMMARY AND CONCLUSIONS
12.

In this paper 3 metnod is presented <nizn fiads
tne ainizua time motions for a maaipulatar detween
given end staces. It coasiders tae fill 3jon-linear 15.
dynaaics of tae 2nanipulator and tae saturstioca
characteristics of its actuators. Using a penalty
function approach, it accounts for tae presaeace of 14.
obstacles in the worx space and restrictioas os the
motions of tne manipulator's joints. I¢ anoss taat
the technique zan also include suca coastraiats as

‘ the maxizsum dynamic forces taat can be tdleratad by 15.

| the odbjact being manipulated, and tne gripper. The

i method has provea to be computationally practical 16.
and has been implemented ia a Computer Aiied Design

i (CAD) softuars package, called OPPARY .I. Exaamples 17.

i of the use of tne a:ethod 4itn a six degree-of-
freedom articulated masnipulator, pecforaiag tasxs

in a typical 1aignly structured aaviroaaent, ars 18.
prosented. The results snow taat 3uo3tantial
improveaents in systaa performance :aa be icaiaved

with tae tecanique.
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